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E L L I P T I C I T Y  C O N D I T I O N S  O F  T H E  S T A T I C  

E Q U A T I O N S  O F  N O N L I N E A R  E L A S T I C I T Y  

V.  D.  B o n d a r '  UDC 539.3 

The relations of  the nonlinear model of the theory of elasticity are considered. The Cauchy 
and the strain gradient tensors are taken to be the characteristics of the stress-strain state 
of a body. Sufficient conditions under which the static equations of elasticity are of elliptic 
type are established. These conditions are expressed in the form of constraints imposed on the 
derivatives of the elastic potential with respect to the strain-measure characteristics. The cases 
of anisotropic and isotropic bodies are treated, including the case where the Almansi tensor is 
taken to be the strain measure. The plane strain of a body is investigated using actual-state 
variables. 

The system of s tat ic  equations of the nonlinear theory of elasticity involves equilibrium and continuity 
equations, constitutive relations, and the expressions of strain measures in terms of displacements. We consider 
the  form of these relations in the Cartesian coordinates of an actual state for the case of plane strains, using 
the  Cauchy stress tensor and the strain gradient tensor as the characteristics of the stress-strain state. 

We assume that  the  deformation from the initial (with Cartesian coordinates of the particles of a body 
x~) into the actual state (with coordinates xk) is described by the smooth reversible functions 

0 0 x30), d e t ( 0 z k ~  xk = xk(z  1, x 2, \Oxo ] # 0 (k, l = 1, 2, 3), 

which correspond to the  components of displacements uk defined as the differences between the actual and 
initial coordinates: uk(xl ,  x2, x3) = xk - x~ x2, x3), where k = 1, 2, 3. For plane strains [parallel to the 
(Xl, x2) plane], the displacement is the two-dimensional vector (ul ,  u2, 0) whose components depend only 
on the coordinates of the  deformation plane ul = Ul(Xl,X2), u2 = u2(xl,x2),  and u3 = 0. We consider 
two-dimensional tensors: the strain gradient C = (CAB) and the displacement gradient U = (U~#), whose 
components are defined as the functions of actual coordinates by the formulas [1] 

c  (xl,x2) = oxo, v  (xl,x2) = a x e  (1) 

Hereafter, the Greek subscript  takes on the values 1 and 2. We use the tensor C as the strain measure. 
The strain gradient can be expressed in terms of the displacement gradient. To this end, we consider 

the  relations 
o Oz,~ Ou,~ Ox~ 

(summation over the repeated indices is performed) and rewrite the last relation with allowance for (1) in the 
component  and invariant forms 

(6o,,, - Uc, a)C~,z = f ,~ ,  ( 8 -  U)C = 8, C = (6 - U) -~, (2) 
where 6 = (6c, Z) is the identi ty tensor. Thus,  the strain gradient is a tensor inverse to the difference between 
the identity tensor and the  displacement gradient. The inverse tensor can be expressed in terms of the initial 
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tensor and its invariants. Let H = 6 - U be the two-dimensional tensor, and H1 and / /2  its basis invariants. 
One can easily see that the Hamilton-Kelly identity for this tensor written in the forms [1] 

(H1 1 ) 
H 2 HIH+ H26 = O, H2 -~2 - H - - 6 -  H = 6 ,  

gives the following expression for the inverse tensor H- l :  
H 1 6 _  I 

H - l =  ~22 ~ 2 H .  (3) 

Here the invariants Hi and //2 are expressed through the basis invariants of the displacement gradient U1 
and 0"2 by the formulas 

gl  = 2 - V l ,  H2= I - U I  +U2, Ul =Un +V22, U2=UnU22-U12U21. (4) 
It follows from (2)-(4) that the strain gradient is expressed via the displacement gradient by the quasi-linear 
relation 

C = (2 - 0 1 ) 6 -  U (2 - U1)6a/~ - Ua~ 
1 - U l + U 2  ' C ~ =  1 - U l + U 2  ' 

Va ~ = Oua OUl Ou2 OUl Ou2 OUl O?A2 
Ox z ,  U, = ~ + , u2 = - -  Ox~ Ozl Oz2 Oz2 0zl 

(5) 

The continuity equation in the form of a relation between the density of material p and the strain 
gradient can be obtained from the law of conservation of mass of a body with initial density p0 and arbitrary 
volume V~, which deforms into the volume V 

Oxa 

Vo v Vo 

i~ the form of the relatio. [2] p0 = plO~/04i or 

po = pC2, C2 = C,,C~2 - C,2C~, ,  (6) 
where 6'2 is the second basis invariant of the strain gradient. 

The stress state of a body in the actual state is characterized by the symmetric Cauchy stress tensor 
P = (Pa~)- We take the constitutive relations in the form of a relation between the Cauchy tensor and the 
strain gradient. This relation follows from the energy-balance equation applied to an elementary adiabatic 
process, which corresponds to an arbitrary virtual displacement (6x~) of the particles in an actual state [3] 

1 p,~ a6z# = 6F, 
p Oz~ 

where F is the elastic potential regarded as a function of the components of the strain gradient. Bearing in 
mind the relations 

OF 

one can write this equation in the form 

from which the constitutive relations 

06x# 06x# 

Ox,~ - O, 

OF 
P ~  = pc~,  ocz~, (7) 

follow by virtue of the arbitrariness of the gradients of virtual displacements. 
Finally, setting the principal vector of the body forces (with density fZ) and surface forces (with density 

P~an,~) to zero 

OPzc,~ 

v E v 

361 



we obtain the equilibrium equations of an elastic body of arbitrary volume V and surface ~ [with outward 
normal (ha)] in actual variables in the form [1] 

: f~  + 0 ~  = 0. (s) 

System (5)-(8) for the quantities p, u~, CaZ, and Pa~ (p0, F, and fa are assumed to be specified) is complete 
and defines the state of equilibrium of an elastic body in plane strain. This system is valid for isotropic and 
anisotropic bodies, which admit the plane strain. 

One can readily see that system (5)-(8) implies second-order equations for displacements. Moreover, 
first-order equations for the strain gradients, which have the simpler structure, can also be obtained from the 
system. To this end, it is sufficient to eliminate the density, stresses, and displacements from the system. To 
eliminate the density and the stresses, we express them in terms of the strain gradient: 

po p~z --_ PO OF 
P--  C-~2 ' C-~2 c~" OCZ~" (9) 

Elimination of the displacements gives the compatibility equations of the strain gradients 

OCt1 O~x~ 0C~2 
o ~  c~2 = o~oo~o = --g-g-c~,. (lO) 

The system of four equations (8) and (10) assumes the form 

OPz,~ OC~,,- OCz2 
OCar Ox----~- + pf~ = O, C~,20C~, C~,, = O, (I i) Oz~ Ox,~ 

where the stresses and the density are defined by expressions (9), and is the system of first-order equations 
for strain gradients. 

We now investigate the type of system (11). For convenience, we write the system in compact form, 
introducing the four-dimensional vectors and matrices: 

A OVk kt.~ ~ + At = 0, (12) 

where the Latin subscript takes on the values 1, 2, 3, and 4. Moreover, the following notation is introduced: 

(VI,V2, Y3, Y4) = (Cll,C12, C21,C22), (A1,A2, Aa, A4) = (pfl,pf2,0, O), 

01'1, 0P12 OPel 0P22 
~ c,.. o ~ ~ c ~  o 

0Pll c3P,2 0P21 0P22 ~ - c 1 ,  o ~ YOZ c~, o 
, (Akl.2)= (Akl.1) = 0Pll  0P12 0P21 01:'22 

~ o c12 ~ ~ o 025 

OP,, 0P12 OP21 0P22 
~ 0 -Cl1 ~ ~ 0 --C21 

Let ~(Xl,Z2) ~- 0 be the equation of the characteristic curve of system (12). We consider the 
characteristic matrix (Qk/): 

(Qkl) = (Akt.vnv), nv = ~ IV~l , 
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(Q~t)  = 

OP~ OP~ 
VCTj, oc,--7 TM 

O Ptr l O Pa 2 
- -  n a 

0C12 ~ ~a 

OP~I OPaz 
n a ~ 12 a 

0C~1 8C21 

O P a l  O P a 2  
~ n a 

0C22 na 0C22 

Ca2na 0 

- C a l n a  0 

0 Ca2na 

0 - C a l n a  

It is well known [4] that system (12) is of elliptic type if the following characteristic equation has no 
real roots 

det (Q/,t) = 0. (13) 

Satisfaction of Eq. (13) (its real roots exist) is equivalent to the existence of a nonzero right-hand column 
vector (dr) of the characteristic matrix 

Qktdt = O. (14) 

In this case, introducing the following notation for the components of the eigenvector d] = al,  d2 = a2, 

d3 = bl, and da = b2 and expanding system (14), we obtain 

OP~ 
Qudz = 0Cl----'~ naa,- + Ca2nabl = O, 

c~ Pa ~ 
Q31dl = - -  naar  + Ca2nab2 = O, 

OC~ 

Q2tdl = - - n a a r  - Calnabl = O, 
0C12 

OP~, 
Q4tdl = OC2---'~ naar - Calnab2 = O. 

(15) 

Elimination of bl and b2 from (15) gives the homogeneous algebraic system for a l  and a2 

0P~r 
. s~ ,~ ,  = o, s~ ,  = ~ ~ c ~ .  (16) 

The tensor (S)~r) appearing in (16) is symmetric. Indeed, using the expressions for the derivatives of the 
invariants C1 and C2 of the strain gradient with respect to its components [1] 

OC1 0C2 = CI~.x - C~), (17) 
c ,  = ~ c . ~ ,  2c2 = ( ~ . c . ~ )  2 - c ~ . c ~ ,  oc~---7 = ~"~' oc~---~ 

and the representation (3) for the tensor, which is inverse to the strain gradient 

1 c - '  = !(c,~-C),c~ c;), = ~(c,~, .~-c.~)  [c;), - (c- ' ) , . , ]  (is) 

one can express the derivative of density (6) with respect to the strain-gradient components by the formula 

Op po 0c2 _ po (c~6.~ - c ~ )  = -pCT~,.  (19) 

Reverting to (7) and using (17)-(19), one establishes that the derivatives of stresses with respect to strains 
are given by the expressions 

O P ~  OF O2F (20) 
OC~ = p ~ ( ~ " ~  - c2:~c~) + p c ~  oc~oc~"  

With allowance for (20), the tensor (16) admits the representation 

OF O2F 
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By virtue of the relations 

n~n~Cw~ - naCa~nwCwt~C-~ = n~,n~Cw~ - n~naCa~ = O, 

the first term in this representation vanishes, and the tensor (S~-) takes the form from which the symmetry 
of the tensor becomes obvious: 

O2F 
SAT = pnaC~ z OCr~OC~t ~ n~Cw~ = Sr~. (21) 

Under the adopted assumption, system (16) must give the nonzero vector (al, a2) [if al = a2 = 0, Eqs. 
(15) with nana= 1 and C2 ~ 0 give bl = b2 = 0, which contradicts the starting assumptions]; it is, therefore, 
necessary that  det (Sat) = 0. Multiplying Eq. (16) by aa and performing summation over A, we infer that, in 
this case, the quadratic form must be zero SAraraA = O. 

We now require that,  for any vector (an), the quadratic form Sxrara~ > 0 be positive or negative 
definite or, in view of (21) and p > 0, 

02F 
A ~  OCr~OC~, A~, > 0 (Ar~ = arnaCal3). (22) 

Then, according to the Sylvester conditions [5], det (SAt) > 0, and system (16) has the only trivial solution 
(el, a2) = (0, 0). In this case, Eq. (15) gives only the zero vector (bl, 52) = (0, 0). Hence, system (14) has no 
nonzero eigenvectors (i.e., its determinant does not vanish), which is equivalent to the absence of real roots of 
the characteristic equation (13). In this case, the quasi-linear system (12) is of elliptic type. Thus, condition 
(22) [or a condition obtained by changing the sign in the inequality (22)] is a sufficient condition of ellipticity 
of the system of equations in strains of nonlinear elasticity for plane strains. The ellipticity condition imposes 
a restriction on the form of the relation between the elastic potential and the deformation characteristics. 

For an isotropic material, the relation between the elastic potential and the strain-gradient components 
is expressed in terms of the invariants of this tensor. We assume that the elastic potential is a function of the 
form F(C~, C~), where C{ = 6~rCra and C~ = CarCrr are the invariant convolutions of the strain gradient, 
which are connected with the basis invariants C1 and C2 of this tensor by the formulas 

C~ = Cl, C~ = C~ - 2C~. (23) 

It follows from relations (17) and (23) that the derivatives of the convolutions with respect to the strain- 
gradient components have the values 

ocl 
= = 2C#,x, 

OC~u 6~,  OCt, 

which are taken into account to give the second derivatives of the elastic potential with respect to the strain- 
gradient components in the form 

02F = 2 O F  02F O~F 02F 
OCr~OC~, OC~. 6~6t'r + ~ 6~,~r + 2 0C~0C'------~2 (C~,~6~r +/~u~C~r) + 4 0C--~22 Ct,~C~. 

In addition to the tensors (CAB) and (Aaz), we introduce the scalar product (Daz) = (CaaA~z) 
and consider the invariant convolutions A] = a~ = Aaa, a~ = aarara, D] = DI = CanAan, and D~ = 
C~AaOCzrAra. On the basis of these relations, the ellipticity condition (22) for an isotropic body can be 
written in the form 

O~ F 02 F 02 F 
2 __0~2 a~ + ~ a 2 + 4 0C~0-------~2 A~DI + 4 ~ D 2 > 0. (24) 

Using the property of the invariant A~, which follows from (22), 

a~ = AarA~a = aan~Cwrarn~Caa = (n~Cw~ar) 2 = A 2 
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~nd determining the components of an arbitrary vector (~a) by the formulas 

~1 = A1 = n~C,,~,aa, ~2 = 2D1 = 2C,~aA~,~ -- 2n~C~C,~,~a,,, 

~e represent the ellipticity condition of an isotropic body (24) in the form 

OF 02F 
2 ~ ~ + oc'oc------~ ~ > o. (25) 

One can see from (25) that the ellipticity condition is satisfied if the first term is positive and the 
=luadratic form is positive definite, i.e., the derivatives of the elastic potential with respect to the invariant 
:onvolutions satisfy the inequalities [5] 

OF 02F 02F 02F ( 02F ~ 2 
ocl > o, oct---- z > o, oc~ ac~ 2 ~ ,o~ocl ]  > o. (26) 

Inequalities (26) are the sufficient conditions of ellipticity of the equations of nonlinear elasticity for 
~n isotropic body in plane strain. 

To investigate the finite strains of an elastic body in actual variables, the Almansi tensor ~ = (~a~), 
r162 components are given by the expressions 

0x ~ ax~ 
2e,~(xl ,  x2) = QZ Oxa Ox~' 

s Mso used. 
The tensor ~ is a function of the strain gradient C and the corresponding conjugate tensor C* [1]: 

2~ = 5 -  C * - ~ C  -1 = 5 - ( C C * )  -1.  

We also consider the strain tensor B = (Ba~) to be the isotropic function of the tensor ~, which is 
=onnected to the tensors C and C* by simpler relations than the tensor ~: 

B = (~ . -  2~)- '  = CC*, B~Z = C~C:,z = C,~,Cz~. 

rhe invariant convolutions B~ and B~ of the tensor B are expressed through the tensor components (Ca~) by 
,he formulas 

B~ = B ~  = C ~ , C ~ , ,  B'2 = B ~ , ~ B ~  = Ca~C~,C~C~, . .  

Using the representation (3) for the inverse tensor, one can readily establish that B and e are connected 
)y the relations 

B = (1 - 2e,)5 - 2e (B2 - B,)5 + B 
= (27) 

1 - 2cl +4e2 ' 2B2 ' 

~here ~I, ~2, B1, and B2 are the basis invariants of the tensors e and B. From (27), one obtains the equalities 

B ~ 5  = 0, 

1 (28) B~ 
1 - 2~  + 4e2 = B22' 2(1 - ~ )  = B-"-2" 

Assuming the relative density of the material to be a finite nonzero quantity and using the continuity 
~quation wri t ten in e and B 

= 1 - 2 e ~ + 4 ~ 2 = ~ 2 2  ~t0, c~, 

ze have 1 - 2 ~  + 4e2 ~ 0 and B2 ~ 0, which, in accordance with (28), allows us to establish the following 
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relations between the invariant convolutions of the tensors e and B: 

e] = B~(B~ 2_l)B~- B~ , e~ = 2B~ + (B~ 2 2(B~ 2 -  B~)(B~ ~ _  S~) 2- 2B~ - B~) (29) 

By virtue of the relation between the strain measures considered above, we can assume that the 
elastic potential in the ellipticity condition (22) depends on the strain-gradient components by means of the 
components of the Almansi tensor: F[eao(Car)]. In the case of an isotropic body, this relation is expressed 
in terms of the basis invariants of the Almansi tensor. Using the invariants e] and e~ or, by virtue of (29), 
the invariants B~ and B~, which are connected with Car by relatively simple relations as basis invariants, we 
have F(BI(Car ), B~2(C~r)). 

Using the formulas 

m 

02 F OF 02 B~ OF 02 B~2 
OCTzOC~ = OB{ OCrzOC~u + OB--W~ OC~#OC~u 

OC z OC u 
02F (OB~ OB~ + OB~ OB~ ) 02F OB~2 0B~ 

OBIOB ~ \OC~ OCx---~ OC,---~ OCat,] + OB---~ OC~z OCxu' 

OB2 
OCTz - 2C~, OCr[3 - 4Sr~, Sr~ = Cr~,Ca~C~ z, 

-- 26r:~6#u' OCT#OCxt, = 4(6t~#C~,Cra + 6ArCa#Cau + C~#Crt~), OC~OCx~, 

the ellipticity condition (22) for an isotropic body assumes the form 

02 F 02 F OF 
a,m# OCr#OCxu axing, = OB~OB'~ fiaT1# + 2 (avav)(mam#) 

OF 
+'~2  [(mzmz)(Ivl~r) + (a,av)(kaka) + rh 21 > O, (30) 

where rn# = n~C~,#, la = 2arCra, ka = 2C~#m#, 71 = 2aaCa#rn#, and 772 = 4avSa#rn#. 
It can easily be seen that, for an arbitrary nonzero vector (al, a2), the following forms are positive 

definite: mzm/3aaaa > 0, and m#m#Ivla + kakaaaaa + r/12 > 0; consequently, condition (30) can be satisfied, 
provided the first derivatives of the elastic potential are positive and the quadratic form is positive definite: 

OF OF 02F 02F 02F ( 02F ~2 
OB---~I > O, OB--~2 > O, .OB~2 > O, OB~2 0B~2 \O-~IOB~] > 0. (31) 

Inequalities (31) represent another [different from (26)] form of the sufficient ellipticity conditions for 
the static equations of isotropic nonlinear elasticity for plane strains. These conditions restrict the values of 
the first and second derivatives in the functional relation between the elastic potential of the form F(B~, B~2) 
and the basis strain invariants. 
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